PowerPhotos 1.3.7 – Manage and find duplicates in multiple Photos libraries. February 24, 2018. PowerPhotos Downloads. Download PowerPhotos 1.6.4 for macOS 10.13 High Sierra. Download PowerPhotos 1.4.2 for macOS 10.12 Sierra. Download PowerPhotos 1.2.3 for macOS 10.11 El Capitan. Download PowerPhotos 1.0.6 for macOS 10.10 Yosemite.
Can you prove that #1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#?
2 Answers
Explanation:
#'using the method of 'color(blue)'proof by induction'#
#'this involves the following steps '#
#• ' prove true for some value, say n = 1'#
#• ' assume the result is true for n = k'#
#• ' prove true for n = k + 1'#
#n=1toLHS=1^2=1#
Powerphotos 1 2 2 0
#'and RHS ' =1/6(1+1)(2+1)=1#
#rArrcolor(red)'result is true for n = 1'#
#'assume result is true for n = k'#
#color(magenta)'assume ' 1^2+2^2+ . +k^2=1/6k(k+1)(2k+1)#
#'prove true for n = k + 1'#
#1^2+2^2+.+k^2+(k+1)^2=1/6k(k+1)(2k+1)+(k+1)^2#
Adobe acrobat 9 gratuit. #=1/6(k+1)[k(2k+1)+6(k+1)]#
#=1/6(k+1)(2k^2+7k+6)#
#=1/6(k+1)(k+2)(2k+3)#
Permute 3 v3 1. #=1/6n(n+1)(2n+1)to' with ' n=k+1#
#rArrcolor(red)'result is true for n = k + 1'#
#rArr1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#
#'prove true for n = k + 1'#
#1^2+2^2+.+k^2+(k+1)^2=1/6k(k+1)(2k+1)+(k+1)^2#
Adobe acrobat 9 gratuit. #=1/6(k+1)[k(2k+1)+6(k+1)]#
#=1/6(k+1)(2k^2+7k+6)#
#=1/6(k+1)(k+2)(2k+3)#
Permute 3 v3 1. #=1/6n(n+1)(2n+1)to' with ' n=k+1#
#rArrcolor(red)'result is true for n = k + 1'#
#rArr1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#
Powerphotos 1 2 2 X 2
Explanation:
Let, #S_n=1^2+2^2+3^2+.+n^2, &, , f(n)=n^3, n in NNuu{0}.#
#:. f(n)-f(n-1)=n^3-(n-1)^3.#
#because, a^3-b^3=(a-b)(a^2+ab+b^2), f(n)-f(n-1),#
#={n-(n-1)}{n^2+n(n-1)+(n-1)^2},#
Powerphotos 1 2 2 Player Games
#=(1)(n^2+n^2-n+n^2-2n+1),#
# rArr f(n)-f(n-1)=n^3-(n-1)^3=3n^2-3n+1;(n in NNuu{0}.#
#n=1 rArr 1^3-0^3=3(1)^2-3(1)+1;#
#n=2 rArr 2^3-1^3=3(2)^2-3(2)+1;#
#n=3 rArr 3^3-2^3=3(2)^2-3(2)+1;#
#vdots vdots vdots vdots vdots vdots vdots vdots vdots vdots#
#n=n rArr n^3-(n-1)^3=3(n)^2-3(n)+1;#
#'Adding, 'n^3-0^3=3{1^2+2^2+3^2+.+n^2}-3{1+2+3+.+n}+n,#
# :. n^3=3S_n-3Sigman+n, or, #
# n^3=3S_n-3/2n(n+1)+n, i.e.,#
#2n^3=6S_n-3n(n+1)+2n=6S_n-3n^2-3n+2n,#
Cakewalk z3ta 2. T software download. # :. 2n^3+3n^2+n=6S_n,# https://amranbiane1982.mystrikingly.com/blog/beta-1-5-minecraft-download.
# :. 6S_n=n(2n^2+3n+1)=n(n+1)(2n+1),#
# rArr S_n=n/6(n+1)(2n+1).#
Enjoy Maths.!