Return to site

Powerphotos 1 2 2

broken image


PowerPhotos 1.3.7 – Manage and find duplicates in multiple Photos libraries. February 24, 2018. PowerPhotos Downloads. Download PowerPhotos 1.6.4 for macOS 10.13 High Sierra. Download PowerPhotos 1.4.2 for macOS 10.12 Sierra. Download PowerPhotos 1.2.3 for macOS 10.11 El Capitan. Download PowerPhotos 1.0.6 for macOS 10.10 Yosemite.

  1. Powerphotos 1 2 2 0
  2. Powerphotos 1 2 2 X 2
  3. Powerphotos 1 2 2 Player Games
A global leader in the design and manufacture of precision micro optics
PowerPhotonic Continues to Accept Orders, Manufacture Product and Ship to Customers
Read More.
Shape and manipulate the intensity profile of single mode and multi-mode laser beams with PowerPhotonic's unique freeform micro-optics
Read More.
Micro-optics capable of handling demanding multi-kilowatt laser applications, precise enough to deliver world-class precision
Read More.
Optimizing your microlens profile is easy using PowerPhotonic's technology. Create the ideal design using our standard products or have something custom made
Read More.
Sign up here to get regular news updates from PowerPhotonic
By signing up for our enews service, you are agreeing to the terms of our privacy policy
View our latest News

Can you prove that #1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#?

2 Answers

Explanation:

#'using the method of 'color(blue)'proof by induction'#

#'this involves the following steps '#

#• ' prove true for some value, say n = 1'#

#• ' assume the result is true for n = k'#

#• ' prove true for n = k + 1'#

#n=1toLHS=1^2=1#

Powerphotos 1 2 2 0

#'and RHS ' =1/6(1+1)(2+1)=1#

#rArrcolor(red)'result is true for n = 1'#

#'assume result is true for n = k'#

#color(magenta)'assume ' 1^2+2^2+ . +k^2=1/6k(k+1)(2k+1)#

Powerphotos 1 2 2 =

#'prove true for n = k + 1'#

#1^2+2^2+.+k^2+(k+1)^2=1/6k(k+1)(2k+1)+(k+1)^2#

Adobe acrobat 9 gratuit. #=1/6(k+1)[k(2k+1)+6(k+1)]#

#=1/6(k+1)(2k^2+7k+6)#

#=1/6(k+1)(k+2)(2k+3)#

Permute 3 v3 1. #=1/6n(n+1)(2n+1)to' with ' n=k+1#

#rArrcolor(red)'result is true for n = k + 1'#

#rArr1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#

Powerphotos 1 2 2

#'prove true for n = k + 1'#

#1^2+2^2+.+k^2+(k+1)^2=1/6k(k+1)(2k+1)+(k+1)^2#

Adobe acrobat 9 gratuit. #=1/6(k+1)[k(2k+1)+6(k+1)]#

#=1/6(k+1)(2k^2+7k+6)#

#=1/6(k+1)(k+2)(2k+3)#

Permute 3 v3 1. #=1/6n(n+1)(2n+1)to' with ' n=k+1#

#rArrcolor(red)'result is true for n = k + 1'#

#rArr1^2+2^2+3^2+.+n^2=1/6n(n+1)(2n+1)#

Powerphotos 1 2 2 X 2

Explanation:

Let, #S_n=1^2+2^2+3^2+.+n^2, &, , f(n)=n^3, n in NNuu{0}.#

#:. f(n)-f(n-1)=n^3-(n-1)^3.#

#because, a^3-b^3=(a-b)(a^2+ab+b^2), f(n)-f(n-1),#

#={n-(n-1)}{n^2+n(n-1)+(n-1)^2},#

Powerphotos 1 2 2 Player Games

#=(1)(n^2+n^2-n+n^2-2n+1),#

# rArr f(n)-f(n-1)=n^3-(n-1)^3=3n^2-3n+1;(n in NNuu{0}.#

#n=1 rArr 1^3-0^3=3(1)^2-3(1)+1;#
#n=2 rArr 2^3-1^3=3(2)^2-3(2)+1;#
#n=3 rArr 3^3-2^3=3(2)^2-3(2)+1;#
#vdots vdots vdots vdots vdots vdots vdots vdots vdots vdots#
#n=n rArr n^3-(n-1)^3=3(n)^2-3(n)+1;#

#'Adding, 'n^3-0^3=3{1^2+2^2+3^2+.+n^2}-3{1+2+3+.+n}+n,#

# :. n^3=3S_n-3Sigman+n, or, #

# n^3=3S_n-3/2n(n+1)+n, i.e.,#

#2n^3=6S_n-3n(n+1)+2n=6S_n-3n^2-3n+2n,#

Cakewalk z3ta 2. T software download. # :. 2n^3+3n^2+n=6S_n,# https://amranbiane1982.mystrikingly.com/blog/beta-1-5-minecraft-download.

# :. 6S_n=n(2n^2+3n+1)=n(n+1)(2n+1),#

# rArr S_n=n/6(n+1)(2n+1).#

Enjoy Maths.!

Related questions





broken image